Arch bridges derive their strength from the fact that vertical loads on the arch generate compressive forces in the arch ring,
which is constructed of materials well able to withstand these forces. The compressive forces in the arch ring result in inclined thrusts at the abutments, and it is essential that arch abutments are
well founded or buttressed to resist the vertical and horizontal components of these thrusts. If the supports
spread apart the arch falls down. The Romans knew all about this.
Traditionally, arch bridges were constructed of stone, brick or mass concrete since these materials are very strong in compression
and the arch could be configured so that tensile stresses did not develop. Modern concrete arch bridges utilise prestressing or reinforcing to resist the tensile stresses which can develop in slender arch rings.
The shape attracted the attention of many of the early pioneers of concrete construction. In 1930, Freyssinet was responsible
for a spectacular arched bridge at Plougastel in France and three years later, Swiss engineer, Robert Maillart
created the famously elegant Schwandbach bridge in which slender cross-walls tie the arch to the horizontally curved roadway.
Plougastel, France
For short spans, a solid reinforced concrete slab, generally cast in-situ rather than precast, is the simplest design. It is also cost-effective, since the flat, level soffit means that falsework and formwork are also simple. Reinforcement, too, is uncomplicated. With larger spans, the reinforced slab has to be thicker to carry the extra stresses under load. This extra weight of the slab itself then becomes a problem, which can be solved in one of two ways. The first is to use prestressing techniques and the second is to reduce the deadweight of the slab by including 'voids', often expanded polystyrene cylinders. Up to about 25m span, such voided slabs are more economical than prestressed slabs.
Greta, Keswick
Beam and slab bridges are probably the most common form of concrete bridge in the UK today. They have the virtue of simplicity, economy, wide availability of the standard sections, and speed of erection. The success of standard precast prestressed concrete beams developed originally by the Prestressed Concrete Development Group supplemented later by alternative designs by others, culminating in the Y-beam introduced by the Prestressed Concrete Association in the late 1980s.
The precast beams are placed on the supporting piers or abutments, usually on rubber bearings which are maintenance free. An in-situ reinforced concrete deck slab is then cast on permanent shuttering which spans between the beams. The precast beams can be joined together at the supports to form continuous beams which are structurally more efficient. However, this is not normally done because the costs involved are not justified by the increased efficiency.
Simply supported concrete beams and slab bridges are now giving way to integral bridges which offer the advantages of less cost and lower maintenance due to the elimination of expansion joints and bearings.
M8 Glasgow
For spans greater than around 45 metres, prestressed concrete box girders are the most common method of concrete bridge construction. The main spans are hollow and the shape of the 'box' will vary from bridge to bridge and along the span, being deeper in cross-section at the abutments and piers and shallower at midspan.
Techniques of construction vary according to the actual design and situation of the bridge, there being three main types: incrementally launched, span-by-span and balanced cantilever
Incrementally launched
In situations where the deck is straight (or with constant curvature) and there is a requirement to avoid
providing falsework in the spanned area, incremental launching may be appropriate. Segments are built at the
end of the previous segment and pushed in place. The process is continued until the entire bridge is constructed.
Normally a steel beam or truss element is connected to the leading edge of the bridge to reduce the cantilever
moment in the main deck. This steel element is referred to as the nosing. Sliding bearings are installed over
the intermediate supports to facilitate movement of the deck.
Span-by-span
For long multi-span viaducts where access from below is limited, expensive or practically impossible, construction
of the deck can be started from one end, one span at a time, where the individual span can be up to 60m.
These bridges are usually constructed in-situ with the falsework moved forward span by span, but can be built of
precast sections. Initially abutments and piers are constructed. A gantry, with a length at least two successive
spans, is initially positioned between one abutment and first inner support. The joints between the segments are
cast-formed using cementitious material or epoxy. When all the segments are installed at their correct position
and their joints are cured, post-tensioning cables are passed through the segments and stressed creating the span
between two supports. The gantry is now moved forward to the next span.
Balanced cantilever
In the early 1950's, the German engineer Ulrich Finsterwalder developed a way of erecting prestressed concrete cantilevers
segment by segment with each additional unit being prestressed to those already in position. This avoids the need for
falsework and the system has since been developed.
Whether created in-situ or using precast segments, the balanced cantilever is one of the most dramatic ways of building a bridge.
Work starts with the construction of the abutments and piers. Then, from each pier, the bridge is constructed in both directions
simultaneously. In this way, each pier remains stable - hence 'balanced' - until finally the individual structural elements meet
and are connected together. In every case, the segments are progressively tied back to the piers by means of prestressing tendons
or bars threaded through each unit.
Incrementally launched
Ceirog, North wales
Span-by-span
Keys, Florida
Balanced cantilever
Skye, Scotland
One of the difficulties in designing any structure is deciding where to put the joints. These are necessary to allow
movement as the structure expands under the heat of the summer sun and contracts during the cold of winter.
Expansion joints in bridges are notoriously prone to leakage. Water laden with road salts can then reach the tops of the piers
and the abutments, and this can result in corrosion of all reinforcement. The expansive effects of rust can split concrete apart.
In addition, expansion joints and bearings are an additional cost so more and more bridges are being built without either.
Such structures, called 'integral bridges', can be constructed with all types of concrete deck. They are
constructed with their decks connected directly to the supporting piers and abutments and with no provision
in the form of bearings or expansion joints for thermal movement. Thermal movement of the deck is accommodated by
flexure of the supporting piers and horizontal movements of the abutments, with elastic compression of the surrounding soil.
Already used for lengths up to 60m, the integral bridge is becoming increasingly popular as engineers
and designers find other ways of dealing with thermal movement
Halban-Almaz, Riyadh
For really large spans, one solution is the cable-stayed bridge. As typified by the Dee Crossing where all
elements are concrete, the design consists of supporting towers carrying cables which support the bridge from
both sides of the tower.
The diagonal cables transfer the vertical loads from the deck directly to the towers, thus the main deck of a
cable-stayed bridge works like a continuous beam on cable supports (more flexible than pier supports) with
additional compression force throughout the deck. Most cable-stayed bridges are built using a form of cantilever
construction which can be either in-situ or precast concrete.
Dee Crossing, North wales
Concrete plays an important part in the construction of a suspension bridge. There will be massive foundations, usually embedded in the ground, that support the weight and cable anchorages. There will also be the abutments, again probably in mass concrete, providing the vital strength and ability to resist the enormous forces, and in addition, the slender superstructures carrying the upper ends of the supporting cables are also generally made from reinforced concrete.
Forth Road Bridge, Scotland